OBJECT ORIENTED
PROGRAMMING USING C++

Chapter 11- C++ Stream Input/Output

Outline

111 Introduction

11.2 Streams

11.21 lostream Library Header Files

11.2.2 Stream Input/Output Classes and Objects

11.3 Stream Output

11.3.1 Stream-Insertion Operator

11.3.2 Cascading Stream-Insertion/Extraction Operators

11.3.3 Output of char * Variables

11.3.4 Character Output with Member Function put; Cascading puts
11.4 Stream Input

1141 Stream-Extraction Operator

11.4.2 get and getline Member Functions

11.4.3 istream Member Functions peek, putback and ignore

11.4.4 Type-Safe I/O

115 Unformatted I/O with read, gcount and write

11.6 Stream Manipulators

11.6.1 Integral Stream Base: dec, oct, hex and setbase

11.6.2 Floating-Point Precision (precision, setprecision)

11.6.3 Field Width (setw, width)

11.6.4 User-Defined Manipulators

11.7 Stream Format States

11.71 Format State Flags

11.7.2 Trailing Zeros and Decimal Points (ios::showpoint)

11.7.3 Justification (ios::left, ios::right, ios::internal)

11.7.4 Padding (fill, setfill)

11.7.5 Integral Stream Base (ios::dec, ios::oct, ios::hex, ios::showbase)
11.7.6 Floating-Point Numbers; Scientific Notation (ios::scientific, ios::fixed)
11.7.7 Uppercase/Lowercase Control (ios::uppercase)

11.7.8 Setting and Resetting the Format Flags (flags, setiosflags, resetiosflags)
11.8 Stream Error States

11.9 Tying an Output Stream to an Input Stream

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.1 Introduction

 Many C++ 1/O features are object-oriented

— use references, function overloading and operator
overloading

o C++ uses type safe I/O

— Each I/O operation is automatically performed in a
manner sensitive to the data type

o Extensibility

— Users may specify 1/O of user-defined types as well as
standard types

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.2 Streams

e Stream
— A transfer of information in the form of a sequence of bytes

e |/O Operations:

— Input: A stream that flows from an input device (I.e.:
keyboard, disk drive, network connection) to main

memory

— Output: A stream that flows from main memory to an
output device (1.e.: screen, printer, disk drive, network

connection)

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.2 Streams (ll)

e |/O operations are a bottleneck

— The time for a stream to flow is many times larger than the time it
takes the CPU to process the data in the stream

e Low-level I/0

— unformatted
— Individual byte unit of interest
— high speed, high volume, but inconvenient for people

e High-level I/O

— formatted
— bytes grouped into meaningful units: integers, characters, etc.
— good for all 1/0 except high-volume file processing

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.2.1 lostream Library Header Files

e 10ostream library:

— <1ostream.h>: Contains cin, cout, cerr,
and clog objects

— <1omanip.h>: Contains parameterized stream
manipulators

— <fstream.h>: Contains information important to
user-controlled file processing operations

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.2.2 Stream Input/Output Classes and
Objects

e I0S:
— 1streamand ostream inherit from 10s
e jostream inherits from 1stream and ostream.

e << (left-shift operator): overloaded as stream
Insertion operator

= >> (right-shift operator): overloaded as stream
extraction operator

e Used with cin, cout, cerr, clog, and with
user-defined stream objects

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.2.2 Stream Input/Output Classes and
Objects (lI)

e Istream: Inputstreams

cin >> someVariable;:

e ci1n knows what type of data is to be assigned to
someVariable (based on the type of someVariable).

e ostream: outputstreams

— cout << someVariable;
e cout knows the type of data to output

— cerr << someString;
« Unbuffered. Prints someString immediately.

— clog << someString;

» Buffered. Prints someString as soon as output buffer is full
or flushed.

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.3 Stream Output

e ostream: performs formatted and unformatted

output
— Uses put for characters and wr 1 te for unformatted characters

— Output of numbers in decimal, octal and hexadecimal
— Varying precision for floating points
— Formatted text outputs

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.3.1 Stream-Insertion Operator

e << |s overloaded to output built-in types

— can also be used to output user-defined types.
— cout << “\n7;

 prints newline character
— cout << endl;

= endl is a stream manipulator that issues a newline character and
flushes the output buffer

— cout << flush;
e Tlush flushes the output buffer.

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.3.2 Cascading Stream-
Insertion/Extraction Operators

e <<: Associates from left to right, and returns a

reference to Iits left-operand object (i.e. cout).

— This enables cascading
cout << "How" << " are" << ' you?'';

Make sure to use parenthesis:

cout << "1 + 2 =" << (1 + 2);
NOT
cout << "1 + 2 = " << 1 + 2;

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.3.3 Output of char * Variables

e << will output a variable of type char *asa
string

e To output the address of the first character of that
string, cast the variable as type void *

© 2000 Deitel & Associates, Inc. All rights reserved. - -

#include <iostream>

using std::cout;
using std::endl;

int main(Q)
{
char *string = "test";
cout << "Value of string is: " << string

<< "\nValue of static_cast< void * >(string) is: "

<< static_cast< void * >(string) << endl;
return O;

Value of string is: test
Value of static_cast< void *>(string) i1s: 0046C070

© 2000 Deitel & Associates, Inc. All rights reserved.

A

Qutline

\

1. Initialize string

2. Print string

2.1 cast into void *

2.2 Print value of
pointer (address of
string)

Program Output

11.3.4 Character Output with Member
Function put; Cascading puts

e put member function

— outputs one character to specified stream
cout.put("A");

— returns a reference to the object that called it, so may be cascaded
cout.put(A").put("\n");

— may be called with an ASCII-valued expression
cout.put(65);
outputs A

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.4 Stream Input

e >> (stream-extraction)

— used to perform stream input

— Normally ignores whitespaces (spaces, tabs, newlines)

— Returns zero (False) when EOF is encountered, otherwise returns
reference to the object from which it was invoked (i.e. cin)

» This enables cascaded input.
cin >> X >> y;

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.4.1 Stream-Extraction Operator

e >> and << have relatively high precedence

— conditional and arithmetic expressions must be contained in
parentheses

e Popular way to perform loops

while (cin >> grade)

o extraction returns O (False) when EOF encountered, and loop
ends

© 2000 Deitel & Associates, Inc. All rights reserved. - -

#include <iostream>

using std::cout;
using std::cin;
using std::endl;

int main()

{
int grade, highestGrade

cout << "Enter grade (enter end-of-file to end): ';

whille (cin >> grade) {

_1;

if (grade > highestGrade)
highestGrade = grade;

cout << "Enter grade (enter end-of-file to end): ";

by

cout << "\n\nHighest grade i1s: "

return O;

}

Enter grade (enter end-of-fTile
Enter grade (enter end-of-fTile
Enter grade (enter end-of-fTile
Enter grade (enter end-of-fTile
Enter grade (enter end-of-fTile
Enter grade (enter end-of-fTile
Enter grade (enter end-of-fTile
Highest grade is: 99

to
to
to
to
to
to
to

end):
end):
end):
end):
end):
end):
end):

<< highestGrade << endl;

67
87
73
95
34
99
N

A

Qutline

\

1. Initialize variables

2. Perform loop

3. Output

Program Output

11.4.2 get and getline Member Functions

e cin.get(): inputs a character from stream
(even white spaces) and returns it

e cin.get(c): Inputsa character from stream
and storesitin c

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.4.2 get and getline Member Functions

(1)

e cin.get(array, size):

accepts 3 arguments: array of characters, the size limit, and a
delimiter (default of “\n?”).

Uses the array as a buffer

When the delimiter is encountered, it remains in the input stream
Null character is inserted in the array

unless delimiter flushed from stream, it will stay there

e cin.getline(array, size)

operates like cin.get(buffer, size) but it discards the
delimiter from the stream and does not store it in array

Null character inserted into array

© 2000 Deitel & Associates, Inc. All rights reserved. - -

fL e e A Qutline

include <iostream> v -
using std::cout;
using std::cin; 1. Initiali iabl
using std::-endl: . Initialize variables
int main
P O 2. Input data

char c;

cout << ""Before i1nput, cin.eof() 1s " << cin.eof() 2.1 Function call

<< '"\nEnter a sentence followed by end-of-Kile:\n"';

3. Output

while ¢ (¢ = cin.get()) != EOF)
cout.put(c);

cin.eof() returns false (0) or
is- v << | true (1)

cin.eof() << endl;

cout << '"\nEOF in this syst
cout << '"\nAfter i1nput, cin.eo
return O;

cin.get() returns the next character

from input stream, including whitespace.

Before input, cin.eof() 1s O A
Enter a sentence followed by end-of-file:

Testing the get and put member functions™Z

Testing the get and put member functions

EOF in this system is: -1

After input cin.eof() 1s 1

© 2000 Deitel & Associates, Inc. All rights reserved.

#include <iostream>

using std::cout;
using std::cin;
using std::endl;

int main(Q)

{
const SIZE = 80;

char buffer[SIZE];

cout << "Enter a sentence:\n";
cin.getline(buffer, SIZE);

cout << "\nThe sentence entered i1s:\n" << buffer << endl;
return O;

Enter a sentence:
Using the getline member function

The sentence entered is:
Using the getline member function

© 2000 Deitel & Associates, Inc. All rights reserved.

A

Qutline

\

1. Initialize variables

2. Input

2.1 Function call

3. Output

Program Output

11.4.3 1stream Member Functions peek,
putback and 1gnore

e 1gnore member function

— skips over a designated number of characters (default of one)

— terminates upon encountering a designated delimiter (default is EOF,
skips to the end of the file)

e putback member function
— places the previous character obtained by get back in to the stream.

e peek

— returns the next character from the stream without removing it

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.4.4 Type-Safe I/O

e << and >> operators

— Overloaded to accept data of different types
— When unexpected data encountered, error flags set

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.5 Unformatted I/O with read, gcount
and write

e read and wri1te member functions

— unformatted 1/0
— Input/output raw bytes to or from a character array in memory

— Since the data is unformatted, the functions will not terminate at a
newl 1ne character for example.

 Instead, like getl 1ne, they continue to process a designated number
of characters.

— If fewer than the designated number of characters are read, then the
failbit is set.

e gcount:

— returns the total number of characters read in the last input
operation.

© 2000 Deitel & Associates, Inc. All rights reserved. - -

#include <iostream>

using std::cout;
using std::cin;
using std::endl;

int main()

{
const int SIZE = 80;

char buffer[SIZE];

cout << "Enter a sentence:\n";

A
\

Qutline

1. Initialize objects

2. Input

3. Output

cin.read(buffer, 20); <+
cout << '"\nThe sentence entered was:\n";
cout.write(buffer, cin.gcount());

cout << endl;
return O;

Enter a sentence:
Using the read, write, and gc
The sentence entered was:
Using the read, writ

© 2000 Deitel & Associates, Inc. All rights reserved.

Only reads first 20 characters

Tt member functions

the last input operation.

g.-count() returns 20 because that
was the number of characters read by

Program Output

11.6 Stream Manipulators

 stream manipulator capabilities:

— setting field widths

— setting precisions

— setting and unsetting format flags
— setting the fill character in fields
— flushing streams

— Inserting a newline in the output stream and flushing the stream
Inserting a null character in the output stream and skipping
whitespace In the input stream.

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.6.1 Integral Stream Base: dec, oct,
hex and setbase

e oct, hex, ordec:

— change base of which integers are interpreted from the stream.
Example:

int n = 15;

cout << hex << n;

— prints "'F"

e setbase:

— changes base of integer output

— load <1omanip>

— Accepts an integer argument (10, 8, or 16)
cout << setbase(1l6) << n;

— parameterized stream manipulator - takes an argument

© 2000 Deitel & Associates, Inc. All rights reserved. - -

#include <iostream>

using std::
using std::
using std::

cout;
cin;
endl ;

#include <iomanip>

using std:
using std:
using std:
using std:

int main()
{

Int n;

cout <<

-hex;
zdec;
oct;
:setbase;

"Enter a decimal number: ™

cin >> n;

cout <<
<<

<<
<<
<<
<<

n << " 1n hexadecimal
hex << n << *"\n*
dec << n << " in octal
oct << n << "\n*

setbase(10) << n << "

n << endl;

return O;

A
\

Qutline

1. Load header

1.1 Initialize variables
2. Input number

3. Output in hex

3.1 Output in octal

3.2 Output in decimal

Enter a decimal number: 20

is: " 20

in hexadecimal i1s: 14

is: "

20

in octal

is: 24

in decim

al

is: "

20

in decimal i1s: 20

Outline

Program Output

© 2000 Deitel & Associates, Inc. All rights reserved.

11.6.2 Floating-Point Precision
(precision, setprecision)

e precision
— member function
— sets number of digits to the right of decimal point
cout.precision(2);
— cout.precision() returns current precision setting
e setprecision

— parameterized stream manipulator
— Like all parameterized stream manipulators, <tomanip> required

— specify precision:
cout << setprecision(2) << X;

* For both methods, changes last until a different
value Is set

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.6.3 Field Width(setw,width)

e 10sS width member function

— sets field width (number of character positions a value should be
output or number of characters that should be input)

— returns previous width

— If values processed are smaller than width, fill characters inserted
as padding
— cin.width(5);

e setw stream manipulator
cin >> setw(5) >> string;

 Remember to reserve one space for the null
character

© 2000 Deitel & Associates, Inc. All rights reserved. - -

© 0 N oo o b~ w N P

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

#include <iostream>

using std::cout;
using std::cin;

using std::endl;

int main(Q)
{
int w = 4;

char string[10];

cout << "Enter a sentence:\n";

cin.width(5);

while (cin >> string) {
cout.width(w++);
cout << string << endl;

cin.width(5);

return O;

}

A

Qutline

\

1. Initialize variables

2. Input sentence

2.1 Set width

2.2 Loop and change
width

3. Output

Outline

Program Output

© 2000 Deitel & Associates, Inc. All rights reserved.

11.7 Stream Format States

e Format flags
— specify formatting to be performed during stream 1/O operations

e setf,unsetfand flags

— member functions that control the flag settings

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.7.1 Format State Flags

e Format State Flags
— defined as an enumeration in class 10s

— can be controlled by member functions

— Tlags - specifies a value representing the settings of all the
flags
 returns long value containing prior options
— setT - one argument, "ors" flags with existing flags
— unsetft - unsets flags

— setirosTtlags - parameterized stream manipulator used to set
flags

— resetiosftlags - parameterized stream manipulator, has same
functions as unsetf

 Flags can be combined using bitwise or "']"

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.7.2 Trailing Zeros and Decimal Points
(10S: :showpoint)

e 10S: :showpoint

— forces a float with an integer value to be printed with its decimal
point and trailing zeros

cout.setf(10s::showpoint)
cout << 79;

79 will print as 79.00000

» number of zeros determined by precision settings

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.7.3 Justification (1os::left,
10s::right, 10s::internal)

e 10s::.left
— fields to left-justified with padding characters to the right

e 10s::right
— default setting
— fields right-justified with padding characters to the left

e Character used for padding set by
— Fr 11 member function
— setfi1 11 parameterized stream manipulator
— default character is space

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.7.3 Justification (1os::left,
10s::right, 1os::internal) (ll)

e Internal flag

— number’s sign left-justified
— number’s magnitude right-justified
— Intervening spaces padded with the fill character

e static datamember 10s: -adjustfield

— contains left, right and internal flags

— 10s::adjustfield must be the second argument to setf
when setting the left, right or internal justification flags.

cout.setf(1os::left, 10s::adjustfield);

© 2000 Deitel & Associates, Inc. All rights reserved. - -

#include <iostream>

using std::
using std::

cout;
endl ;

#include <iomanip>

using std::

using std:
using std:
using std:

int main()

{

int x =

cout <<
<<

<< "\nUse setf to set 10s::left:\n" << setw(10);

cout.setf(1os::left, 10s::adjustfield);

cout <<

cout.unsetf(i1os::left);

cout <<
<<
<<
<<
<<
<<
<<

i0S;

isetw;
:setiosflags;
:resetiosflags;

12345;

"Default 1s right justified:\n"
setw(10) << x << "\n\nUSING MEMBER FUNCTION

A
\

Qutline

1. Initialize variable

2. Use parameterized
stream manipulators

3. Output

Default i1s right justified:
12345

USING MEMBER FUNCTIONS

s ;
Use setf to set i10s::left:

12345

X << '"\nUse unsetf to restore default:\n"';

setw(10) << X

USING PARAMETERIZED STREAM MANIPULATORS
Use setiosflags to set i1os::left:
12345

"\n\nUSING PARAMETERIZED STREAM MANIPULATOR
'"\nUse setiosflags to set ios::left:\n"
setw(10) << setiosflags(ios::left) << X

Sll

"\nUse resetiosflags to restore default:\n'
setw(10) << resetiosflags(i1os::left)
X << endl;

Use resetiosflags to restore default:
12345

return O;

Default i1s right justified:
12345

USING MEMBER FUNCTIONS

Use setf to set 10s::left:

12345

Use unsetf to restore default:
12345

USING PARAMETERIZED STREAM MANIPULATORS

Use setiosflags to set i1os::left:

12345

Use resetiosflags to restore default:
12345

© 2000 Deitel & Associates, Inc. All rights reserved.

A

Qutline

\

Program Output

11.7.4 Padding(fill, setfill)

e F1 11 member function

— specifies the fill character

— space Is default

— returns the prior padding character
cout.fill("*");

e setfi 1l manipulator

— also sets fill character
cout << setfill ("*");

© 2000 Deitel & Associates, Inc. All rights reserved. - -

10

11

12

13

14

15

16

17

18

19

20

// Fig. 11.24: figll 24 ._cpp

// Using the fill member function and the setfill
// manipulator to change the padding character for
// Tields larger than the values being printed.

#include <iostream>

using std::cout;

using std::endl;

#include <iomanip>

using std::i10s;

using std::setw;

using std::hex;

using std::dec;

using std::setfill;

int mainQ)

int x = 10000;

A

Qutline

\'%

1. Load header

1.1 Initialize variable

cout << x << " printed as int right and left justified\n" A Outline
<< "and as hex with internal justification.\n" v -
<< "Using the default pad character (space):\n";

cout.setf(10s::showbase);

cout << setw(10) << x << "\n"; 2. Set fill character

cout.setf(1os::left, i10s::adjustfield);

cout << setw(10) << X << "\n";

cout.setf(1os::internal, 10s::adjustfield);

cout << setw(10) << hex << x;

3. Output

cout << "\n\nUsing various padding characters:\n";
cout.setf(10s::right, 1os::adjustfield);

cout.Fill("*");

cout << setw(10) << dec << X << "\n";

cout.setf(10os::left, i10s::adjustfield);

cout << setw(10) << setfill("%") << x << "\n~";
cout.setf(1os::internal, 10s::adjustfield);

cout << setw(10) << setfill("*") << hex << x << endl;
return O;

}

10000 printed as int right and left justified

and as hex with internal justification.

Using the default pad character (space):
10000

10000

Ox 2710

Program Output

Using various padding characters:
F*x*%*10000
10000%%%%%
OXMNN2T710

11.7.5- Integral Stream Base (ios::dec,

l0S:.0cCt, 10S::hex, I0os::showbase)

e 10S: -basefield static member

used similarly to 10s: :adjustfield with setf
Includes the 10Ss: -ocCt, 10s:-hex and 10s: -dec flag bits

specify that integers are to be treated as octal, hexadecimal and
decimal values

default is decimal

default for stream extractions depends on form inputted
* integers starting with O are treated as octal
* Integers starting with Ox or OX are treated as hexadecimal

once a base specified, settings stay until changed

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.7.6 Floating-Point Numbers; Scientific
Notation (10s::scientific,10s::fixed)

e j10s::scientific
— forces output of a floating point number in scientific
notation:

e 1_.946000e+009

e 10s::fixed
— forces floating point numbers to display a specific

number of digits to the right of the decimal (specified
with precision)

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.7.6 Floating-Point Numbers; Scientific
Notation (lI)

e static data member 1os: :Ffloatfield
— contains 10s: :scientificand 1os: : fixed

— used similarly to 10s: -adjustfieldand
10s: -basefield insetf

e cout.setf(1os::scientific,
10s::floatfield);

— cout.setf (0, 1os::floatfield) restores
default format for outputting floating-point numbers

© 2000 Deitel & Associates, Inc. All rights reserved. - -

#include <iostream>

using std::cout;
using std::endl;
using std::i1o0s;

int main()
{
double x = .001234567, y = 1.946€9;

cout << "Displayed i1n default format:\n"
<< X << "\t" << vy << "\n";

cout.setf(i1os::scientific, 1o0s::floatfield);

cout << "Displayed iIn scientific format:\n"
<< X << "\t" << y << "\n";

cout.unsetf(i1os::scientific);

cout << "Displayed iIn default format after unsetf:\n"
<< X << "\t" << y << "\n";

cout.setf(i1os::fFixed, 10s::floatfield);

cout << "Displayed 1n fixed format:\n"'
<< X << "\t" << vy << endl;

return O;
¥
Displayed in default format:
0.00123457 1.946e+009

Displayed in scientific format:
1.234567e-003 1.946000e+009

Displayed in default format after unsetf:
0.00123457 1.946e+009

Displayed in fixed format:

0.001235 1946000000 .000000

A

Qutline

\

1. Initialize variables

2. Set flags

3. Output

Program Output

11.7.7 Uppercase/Lowercase Control
(10S: _uppercase)

e 10S: .uUppercase
— forces uppercase E to be output with scientific notation
4 _.32E+010

— forces uppercase X to be output with hexadecimal numbers, and
causes all letters to be uppercase

/5BDE

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.7.8 Setting and Resetting the Format Flags
(Flags, setiosftlags, resetiosftlags)

e flags member function

— without argument, returns the current settings of the format flags
(as a long value)

— with a long argument, sets the format flags as specified
* returns prior settings
e setf member function

— sets the format flags provided in its argument
— returns the previous flag settings as a long value

long previousFlagSettings =
cout.setf(10s::showpoint | 10S::showpos);

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.7.8 Setting and Resetting the Format Flags
(Flags, setiosftlags, resetiosftlags) (Il

e setf with two ong arguments
cout.setf(1os::left, 10s::adjustfield);
clears the bits of 10s: -adjustfieldthensets 10s::left

— This version of setf can be used with

— 10s::basefield (10s::dec, 10s::oct, 10S::hex)

— 1os::floatfield (1os::scientific, 10s::fixed)

— 10s::adjustfield (1os::left, 10s::right,
1os::internal)

e unsetf

— resets specified flags
— returns previous settings

© 2000 Deitel & Associates, Inc. All rights reserved. - -

#include <iostream>

using std::cout;
using std::endl;
using std::i10s;

A
\

Qutline

1. Initialize variables

2. Set flags
int main()
{
int i = 1000; 3. Output
double d = 0.0947628;
cout << "The value of the flags variable is: " The value of the flags variable is: 0
<< cout.flags(Q)
<< "\nPrint int and double in original format:\n"
<< I << "\t" << d << "\n\n"; | Print int and double in oriainal format:

long originalFormat

cout.flags(1o0s::oct |

cout << "The value of the flags variable 1
<< cout.flags()

<< "\nPrint int and double

Print int and double in a new format
1os::scient specified using the flags member function:
1750 9.476280e-002

in a new format\n"

<< "'specified using the flags member function:\n"

<< 1 << "\t" << d << "\n\n";

cout.flags(originalFormat);«—— | Notice how originalFormat (a long) is

cout << "The value of the flags variable is: " |1 The value of the flags variable is: 0
<< cout.flags()

<< "\nPrint values i1n original format again:\n"

<< I << "\t" << d << endl;

return O;

Print values i1n original format again:
1000 0.0947628

The value
Print iInt

1000 0.

The value
Print iInt
specified

1750 9.

The value

of the flags variable 1s: O
and double in original format:
0947628

of the flags variable 1s: 4040
and double in a new format

using the flags member function:

476280e-002

of the flags variable 1s: O

Print values i1n original format again:

1000 0.

0947628

© 2000 Deitel & Associates, Inc. All rights reserved.

A

Qutline

\

Program Output

11.8 Stream Error States

e eofbit

— set for an input stream after end-of-file encountered

— cin.eof () returns true if end-of-file has been encountered on
cin

e farlbit
— set for a stream when a format error occurs
— cin.farl() - returns true if a stream operation has failed

— normally possible to recover from these errors

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.8 Stream Error States (ll)
e pbadbit

— set when an error occurs that results in data loss

— cin.bad() returns true if stream operation failed
— normally nonrecoverable

e goodbit

— set for a stream If neither eofbit, Failbit or badbit are set

— cin.good() returns true if the bad, fail and eof functions
would all return false.

— 1/0O operations should only be performed on “good” streams
e rdstate
— returns the state of the stream

— stream can be tested with a switch statement that examines all of
the state bits

— easler to use eof, bad, fail, and good to determine state

© 2000 Deitel & Associates, Inc. All rights reserved. - -

11.8 Stream Error States (lll)

e clear

— used to restore a stream’s state to “good”

— cin.clear() clears cin and sets goodbt for the stream.

— cin.clear(1os::failbit) actually setsthe Farlbit.
» might do this when encountering a problem with a user-defined type

o QOther operators

— operator!

o returns true if badbitor farlbit set
— operator void*

o returns False if badbit or farlbit set

— useful for file processing

© 2000 Deitel & Associates, Inc. All rights reserved. - -

#include <iostream>

using std::cout;
using std::endl;
using std::cin;

int main()
{
int x;
cout <<

<<
<<
<<
<<
<<
<<
cin >> X;

cout <<
<<
<<
<<
<<
<<

"\n cin.eof(): "
"\n cin.fail(): "
"\n cin.bad(): "
"\n cin.good(): "

"\ncin.rdstate(): "
"\n cin.eof(): "
"\n cin.fail(Q: "
"\n cin.bad(): "
"\n cin.good():

cin.clear();

cout << "'
<< e

<< (1]

return O;

After cin.clear()"
\ncin.fairl(): "
\ncin.good(): "

<<

<<
<<
<<
<<
<<

cin.
cin.
cin.
cin.
cin.

cin.
cin.
cin.
cin.
cin.

"Before a bad input operation:"
"\ncin.rdstate(): "

rdstate()
eof()
fail()
bad()
good()

"\n\nExpects an iInteger, but enter a character:

A
\

1. Initialize variable

Qutline

2. Function calls

cin.rdstate(): O

cin.eof():
cin.fail():
cin.bad():
cin.good():

r O O O

Before a bad input operation:

Expects an in

'"\nAfter a bad Input operation:"

rdstate()
eof()
fail()
bad()

good() << "\n\n"';

<< cin.fail()
<< cin.good() << endl;

After a bad Input operation:

cin.rdstate():
cin.eof():
cin.fail():
cin.bad():
cin.good():

2

0
1
0
0

After cin.clear()

cin.-fail(Q: O
cin.good(): 1

A

Before a bad input operation: gzliLUEEQ
cin.rdstate(): O v
cin.eof(): O
cin.fail(Q: O
cin.badQ: O Program Output
cin.good(): 1

Expects an integer, but enter a character: A

After a bad Input operation:
cin.rdstate(): 2

cin.eof(): O

cin.fail(: 1

cin.bad(): O

cin.good(): O

After cin.clear()

cin.-fail(Q: O
cin.good(): 1

© 2000 Deitel & Associates, Inc. All rights reserved.

11.9 Tying an Output Stream to an Input
Stream

e t1e member function

— synchronize operation of an 1stream and an ostream

— outputs appear before subsequent inputs
— automatically done for cin and cout

e InputStream.tie(&outputStream);

— ties InputStream to outputStream
— cin.tie(&cout) done automatically

e inputStream.tie(0);

— unties tnputStream from an output stream

© 2000 Deitel & Associates, Inc. All rights reserved. - -

